Add like
Add dislike
Add to saved papers

Building trans-omics evidence: using imaging and 'omics' to characterize cancer profiles.

Utilization of single modality data to build predictive models in cancer results in a rather narrow view of most patient profiles. Some clinical facet s relate strongly to histology image features, e.g. tumor stages, whereas others are associated with genomic and proteomic variations (e.g. cancer subtypes and disease aggression biomarkers). We hypothesize that there are coherent "trans-omics" features that characterize varied clinical cohorts across multiple sources of data leading to more descriptive and robust disease characterization. In this work, for l 05 breast cancer patients from the TCGA (The Cancer Genome Atlas), we consider four clinical attributes (AJCC Stage, Tumor Stage, ER-Status and PAM50 mRNA Subtypes), and build predictive models using three different modalities of data (histopathological images, transcriptomics and proteomics). Following which, we identify critical multi-level features that drive successful classification of patients for the various different cohorts. To build predictors for each data type, we employ widely used "best practice" techniques including CNN-based (convolutional neural network) classifiers for histopathological images and regression models for proteogenomic data. While, as expected, histology images outperformed molecular features while predicting cancer stages, and transcriptomics held superior discriminatory power for ER-Status and PAM50 subtypes, there exist a few cases where all data modalities exhibited comparable performance. Further, we also identified sets of key genes and proteins whose expression and abundance correlate across each clinical cohort including (i) tumor severity and progression (incl. GABARAP), (ii) ER-status (incl.ESRl) and (iii) disease subtypes (incl. FOXCl). Thus, we quantitatively assess the efficacy of different data types to predict critical breast cancer patient attributes and improve disease characterization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app