Add like
Add dislike
Add to saved papers

GABA A and GABA B receptor subunit localization on neurochemically identified neurons of the human subthalamic nucleus.

The subthalamic nucleus (STN) is a critical excitatory signaling center within the basal ganglia circuitry. The activity of subthalamic neurons is tightly controlled by upstream inhibitory signaling centers in the basal ganglia. In this study, we used immunohistochemical techniques to firstly, visualize and quantify the STN neurochemical organization based on neuronal markers including parvalbumin (PV), calretinin (CR), SMI-32, and GAD65/67 . Secondly, we characterized the detailed regional, cellular and subcellular expression of GABAA (α1 , α2 , α3 , β2/3 , and γ2 ) and GABAB (R1 and R2) receptor subunits within the normal human STN. Overall, we found seven neurochemically distinct populations of principal neurons in the human STN. The three main populations detected were: (a) triple-labeled PV+ /CR+ /SMI32+ ; (b) double-labeled PV+ /CR+ ; and (c) single-labeled CR+ neurons. Subthalamic principal neurons were found to express GABAA receptor subunits α1 , α3 , β2/3 , γ2 , and GABAB receptor subunits R1 and R2. However, no expression of GABAA receptor α2 subunit was detected. We also found a trend of increasing regional staining intensity for all positive GABAA receptor subunits from the dorsolateral pole to ventromedial extremities. The GAD+ interneurons showed relatively low expression of GABAA receptor subunits. These results provide the morphological basis of GABAergic transmission within the normal human subthalamic nucleus and evidence of GABA innervation through both GABAA and GABAB receptors on subthalamic principal neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app