Add like
Add dislike
Add to saved papers

Intracellular metal binding and redox behavior of human DJ-1.

DJ-1 is a conserved, ubiquitous protein associated to a large number of intracellular processes. Human DJ-1 has been linked to several pathologies, including hereditary forms of Parkinson's disease, cancer, and amyotrophic lateral sclerosis. Several cytoprotective functions of DJ-1 have been reported, however, its actual mechanisms of action remain elusive. In vitro, DJ-1 has been shown to bind zinc and copper(II) at its active site, which contains a conserved cysteine (C106), and copper(I) at a different binding site. C106 is essential to DJ-1 function, and is easily oxidized upon oxidative stress. Here, we investigated the metal-binding- and redox properties of DJ-1 in living human cells by in-cell NMR. Intracellular DJ-1 is surprisingly free from interactions with any other cellular components and as such is clearly detectable by NMR. Metal-bound forms of DJ-1 were not observed upon treating the cells with excess zinc or copper. No copper binding was observed when co-expressing DJ-1 with the copper chaperone for superoxide dismutase 1 (SOD1). Co-expression of DJ-1 with SOD1 itself did not promote copper binding to SOD1, excluding a previously suggested function of DJ-1 as a copper chaperone. Overall, our data do not support the role of DJ-1 as a metalloprotein. Conversely, oxidative treatment to the cells caused the complete and selective oxidation of C106 to sulfinic acid, consistent with the reported role of DJ-1 as a redox sensor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app