Add like
Add dislike
Add to saved papers

Increased miR-21a provides metabolic advantages through suppression of FBP1 expression in non-small cell lung cancer cells.

Lung cancer is the most common solid tumor and the leading cause of cancer-related mortality worldwide. miR-21 is one of the most commonly observed aberrant miRNAs in human cancers. However, the biological roles of miR-21 in glucose metabolism of non-small cell lung cancer (NSCLC) cells remain unknown. In the present study, our findings demonstrated that miR-21 promoted glucose uptake and increased TXNIP expression. miR-21 increased lactate generation and decreased oxygen consumption in NSCLC cells. Moreover, we found that miR-21 promoted glycolysis and decreased OXPHOS. Mechanistically, fructose-1,6-biphosphatase (FBP1) was a direct target of miR-21 and observed a negative correlation between miR-21 and FBP1 in NSCLC samples. Restoring FBP1 expression reversed the effects induced by miR-21 overexpression in NSCLC cells. Together, our findings suggest the critical role of miR-21 in glucose metabolism through suppression of FBP1 in NSCLC cells. miR-21 may be a potential target of NSCLC treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app