Add like
Add dislike
Add to saved papers

Spatial Multiresolution Analysis of the Effect of PM 2.5 on Birth Weights.

Fine particulate matter (PM2.5 ) measured at a given location is a mix of pollution generated locally and pollution traveling long distances in the atmosphere. Therefore, the identification of spatial scales associated with health effects can inform on pollution sources responsible for these effects, resulting in more targeted regulatory policy. Recently, prediction methods that yield high-resolution spatial estimates of PM2.5 exposures allow one to evaluate such scale-specific associations. We propose a two-dimensional wavelet decomposition that alleviates restrictive assumptions required for standard wavelet decompositions. Using this method we decompose daily surfaces of PM2.5 to identify which scales of pollution are most associated with adverse health outcomes. A key feature of the approach is that it can remove the purely temporal component of variability in PM2.5 levels and calculate effect estimates derived solely from spatial contrasts. This eliminates the potential for unmeasured confounding of the exposure - outcome associations by temporal factors, such as season. We apply our method to a study of birth weights in Massachusetts, U.S.A from 2003-2008 and find that both local and urban sources of pollution are strongly negatively associated with birth weight. Results also suggest that failure to eliminate temporal confounding in previous analyses attenuated the overall effect estimate towards zero, with the effect estimate growing in magnitude once this source of variability is removed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app