JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

IL-11 promotes the treatment efficacy of hematopoietic stem cell transplant therapy in aplastic anemia model mice through a NF-κB/microRNA-204/thrombopoietin regulatory axis.

Hematopoietic stem cell (HSC) transplantation could be of therapeutic value for aplastic anemia (AA) patients, and immunosuppressants may facilitate the efficiency of the procedure. As anti-inflammatory cytokine interleukin-11 (IL-11) has a thrombopoietic effect, its use in cases of chronic bone marrow failure, such as AA, has been proposed to induce HSC function. However, the putative mechanisms that may support this process remain poorly defined. We found that decreased miR-204-5p levels were coincident with increased proliferation in mouse HSCs following exposure to IL-11 in vitro. Through inhibiting NF-кB activity, miR-204-5p repression was demonstrated to be a downstream effect of IL-11 signaling. miR-204-5p was shown to directly target thrombopoietin (TPO) via sequence-dependent 3'-UTR repression, indicating that this microRNA-dependent pathway could serve an essential role in supporting IL-11 functions in HSCs. Increased TPO expression in HSCs following IL-11 exposure could be mimicked or blocked by inhibiting or overexpressing miR-204-5p, respectively. Consistent with these in vitro findings, IL-11 promoted HSC engraftment in a mouse model of AA, an effect that was attenuated in cells overexpressing miR-204-5p. The reduction in miR-204-5p levels is an integral component of IL-11 signaling that may play an essential role in treating AA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app