Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin.

Biomaterials 2018 Februrary
Injection of recombinant tissue plasminogen activator (rt-PA) is the standard drug treatment for thrombolysis. However, rt-PA shows risk of hemorrhages and limited efficiency even at high doses. Polysaccharide-poly(isobutylcyanoacrylate) nanoparticles functionalized with fucoidan and loaded with rt-PA were designed to accumulate on the thrombus. Fucoidan has a nanomolar affinity for the P-selectin expressed by activated platelets in the thrombus. Solid spherical fluorescent nanoparticles with a hydrodynamic diameter of 136 ± 4 nm were synthesized by redox radical emulsion polymerization. The clinical rt-PA formulation was successfully loaded by adsorption on aminated nanoparticles and able to be released in vitro. We validated the in vitro fibrinolytic activity and binding under flow to both recombinant P-selectin and activated platelet aggregates. The thrombolysis efficiency was demonstrated in a mouse model of venous thrombosis by monitoring the platelet density with intravital microscopy. This study supports the hypothesis that fucoidan-nanoparticles improve the rt-PA efficiency. This work establishes the proof-of-concept of fucoidan-based carriers for targeted thrombolysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app