Add like
Add dislike
Add to saved papers

In situ laser measurement of oxygen concentration and flue gas temperature utilizing chemical reaction kinetics.

Optics Letters 2017 December 2
Combustion research requires detailed localized information on the dynamic combustion conditions to improve the accuracy of the simulations and, hence, improve the performance of the combustion processes. We have applied chemical reaction kinetics of potassium to measure the local temperature and O2 concentration in flue gas. An excess of free atomic potassium is created in the measurement volume by a photofragmenting precursor molecule such as potassium chloride or KOH which are widely released from solid fuels. The decay of the induced potassium concentration is followed with an absorption measurement using a narrow-linewidth diode laser. The temperature and O2 concentration are solved from the decay curve features using equations obtained from calibration measurements in a temperature range of 800°C-1000°C and in O2 concentrations of 0.1%-21%. The local flue gas temperature and O2 concentration were recorded in real time during devolatilization, char burning, and ash cooking phases of combustion in a single-particle reactor with a 5 Hz repetition rate. The method can be further extended to other target species and applications where the chemical dynamics can be disturbed with photofragmentation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app