Add like
Add dislike
Add to saved papers

Emission spectroscopy of expanding laser-induced gaseous hydrogen-nitrogen plasma.

Applied Optics 2017 November 21
Microplasma is generated in an ultra-high-pure H2 and N2 gas mixture with a Nd:YAG laser device that is operated at the fundamental wavelength of 1064 nm. The gas mixture ratio of H2 and N2 is 9 to 1 at a pressure of 1.21 ± 0.03 105 Pa inside a chamber. A Czerny-Turner-type spectrometer and an intensified charge-coupled device are utilized for the recording of plasma emission spectra. The line-of-sight measurements are Abel inverted to determine the radial distributions of electron number density and temperature. Recently derived empirical formulas are utilized for the extraction of values for electron density. The Boltzmann plot and line-to-continuum methods are implemented for the diagnostic of electron excitation temperature. The expansion speed of the plasma kernel maximum electron temperature amounts to 1  km/s at a time delay of 300 ns. The microplasma, initiated by focusing 14 ns, 140 mJ pulses, can be described by an isentropic expansion model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app