Add like
Add dislike
Add to saved papers

Computational Kinetic Modeling of the Catalytic Cycle of Glutathione Peroxidase Nanomimic: Effect of Nucleophilicity of Thiols on the Catalytic Activity.

The catalytic cycle of a new derivative of ebselen, 1, was elucidated via three steps by the density functional theory and solvent-assisted proton exchange procedure involving indirect proton exchange through a hydrogen-bonded transfer network. Different behaviors of the aromatic and aliphatic thiols were investigated in the reduction of selenoxide (step 2 → 3) and selenurane (step 3 → 1) based on their nucleophilicity. The reduction of selenoxide in the presence of thiophenol (ΔG‡ = 15.9 kcal·mol-1 ) is faster than that of methanethiol (ΔG‡ = 29.3 kcal·mol-1 ), and methanethiol makes the reduction of selenoxide unspontaneous and kinetically unfavorable (ΔG = 2.8 kcal·mol-1 ). The nucleophilic attack may be enhanced by using the thiophenol backbone at the selenium center to lower the energy barrier of the selenoxide reduction (ΔG‡ = 15.9 kcal·mol-1 ). On the basis of the turnover frequency calculations, during the catalytic cycle, the rate of the reaction was analyzed and discussed. Low values of the electron density and Laplacian at the transition states are the evidence of the covalent O-H and O-O bonds rupture in the presence of methanethiol and thiophenol. The nature of the critical bond points was characterized, using the quantum theory of atoms in molecules, based on the electron location function and localized orbital locator values. Finally, the charge transfer process at the rate-determining step was investigated based on the natural bond orbital analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app