Add like
Add dislike
Add to saved papers

Carbon-Induced Generation of Hierarchical Structured Ni 0.75 Co 0.25 (CO 3 ) 0.125 (OH) 2 for Enhanced Supercapacitor Performance.

Hierarchical nanostructures with heteroatom doping have been considered as an important component in electrode materials for advanced supercapacitors. Herein, with the aid of C, N, and S codoped Ni0.75 Co0.25 (CO3 )0.125 (OH)2 /C (NSH) with a hierarchical structure was synthesized through a facile one-step hydrothermal method. Notably, it is the first report on a carbon precursor as a structure inducer for designing a three-dimensional (3D) carnation-like hierarchical structure. Thanks to the carbon induction effect and the introduction of N/S dopants, the obtained NSH with a 3D architecture exhibits superior performances as electrode materials for supercapacitors. For example, NSH offers a high specific capacity of 277.3 mAh/g at 0.5 A/g. Moreover, the assembled NSH//reduced graphene oxide hydrogel-based hybrid supercapacitor exhibits high energy densities of 44.4 and 11.7 Wh/kg at power densities of 460 W/kg and 9.8 kW/kg, respectively. This result opens up opportunities for carbon-induced methods to control the morphology and structure of other similar materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app