Add like
Add dislike
Add to saved papers

Map and correlate intracellular calcium response and matrix deposition in cartilage under physiological oxygen tensions.

Face to the limited repair capability of cartilage, we intended to find out signaling responsible for its matrix synthesis. Since spontaneous calcium response likes a label of cell status, here it was mapped in fresh and 24 hr cultured in situ chondrocytes under oxygen tensions of 20%, 5%, and 1% as well as mimic hypoxia conditions. The calcium source was traced using ethylene glycol-bis (β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and thapsigargin (TG) to treat cartilage. Their relative matrix of type II collagen (COLL-II) and glycosaminoglycan (GAG) were quantified after cultured for 3 and 7 days. We disclosed the specific fingerprint of calcium response and matrix deposition along the histological zones under various oxygen tensions, from which the effects of hyperoxia, normoxia, and hypoxia conditions on as well as the optimal oxygen tensions for maintenance of various zones of cartilage or chondrocytes were derived and obtained. Our results revealed that cytoplasm calcium was conducive to synthesize COLL-II but detrimental to synthesize GAG. These results provide correlation in addition to details of intracellular calcium response and matrix deposition in in situ cartilage along its histological zones under physiological oxygen tensions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app