Add like
Add dislike
Add to saved papers

Enhancement of methane production from 1-hexadecene by additional electron donors.

1-Hexadecene-contaminated wastewater is produced in oil refineries and can be treated in methanogenic bioreactors, although generally at low conversion rates. In this study, a microbial culture able to degrade 1-hexadecene was enriched, and different stimulation strategies were tested for enhancing 1-hexadecene conversion to methane. Seven and three times faster methane production was obtained in cultures stimulated with yeast extract or lactate, respectively, while cultures amended with crotonate lost the ability to degrade 1-hexadecene. Methane production from 1-hexadecene was not enhanced by the addition of extra hydrogenotrophic methanogens. Bacteria closely related to Syntrophus and Smithella were detected in 1-hexadecene-degrading cultures, but not in the ones amended with crotonate, which suggests the involvement of these bacteria in 1-hexadecene degradation. Genes coding for alkylsuccinate synthase alpha-subunit were detected in cultures degrading 1-hexadecene, indicating that hydrocarbon activation may occur by fumarate addition. These findings are novel and show that methane production from 1-hexadecene is improved by the addition of yeast extract or lactate. These extra electron donors may be considered as a potential bioremediation strategy of oil-contaminated sites with bioenergy generation through methane production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app