Add like
Add dislike
Add to saved papers

Hybrid black silicon solar cells textured with the interplay of copper-induced galvanic displacement.

Scientific Reports 2017 December 8
Metal-assisted chemical etching (MaCE) has been widely employed for the fabrication of regular silicon (Si) nanowire arrays. These features were originated from the directional etching of Si preferentially along <100> orientations through the catalytic assistance of metals, which could be gold, silver, platinum or palladium. In this study, the dramatic modulation of etching profiles toward pyramidal architectures was undertaken by utilizing copper as catalysts through a facile one-step etching process, which paved the exceptional way on the texturization of Si for advanced photovoltaic applications. Detailed examinations of morphological evolutions, etching kinetics and formation mechanism were performed, validating the distinct etching model on Si contributed from cycling reactions of copper deposition and dissolution under a quasi-stable balance. In addition, impacts of surface texturization on the photovoltaic performance of organic/inorganic hybrid solar cells were revealed through the spatial characterizations of voltage fluctuations upon light mapping analysis. It was found that the pyramidal textures made by copper-induced cycling reactions exhibited the sound antireflection characteristics, and further achieved the leading conversion efficiency of 10.7%, approximately 1.8 times and beyond 1.2 times greater than that of untexturized and nanowire-based solar cells, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app