Add like
Add dislike
Add to saved papers

Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction.

Scientific Reports 2017 December 8
The fabrication of complex three-dimensional gold-containing nanocomposite structures by simultaneous two-photon polymerisation and photoreduction is demonstrated. Increased salt delivers reduced feature sizes down to line widths as small as 78 nm, a level of structural intricacy that represents a significant advance in fabrication complexity. The development of a general methodology to efficiently mix pentaerythritol triacrylate (PETA) with gold chloride hydrate (HAuCl4 ∙3H2 O) is reported, where the gold salt concentration is adjustable on demand from zero to 20 wt%. For the first-time 7-Diethylamino-3-thenoylcoumarin (DETC) is used as the photoinitiator. Only 0.5 wt% of DETC was required to promote both polymerisation and photoreduction of up to 20 wt% of gold salt. This efficiency is the highest reported for Au-containing composite fabrication by two-photon lithography. Transmission Electron Microscopy (TEM) analysis confirmed the presence of small metallic nanoparticles (5.4 ± 1.4 nm for long axis / 3.7 ± 0.9 nm for short axis) embedded within the polymer matrix, whilst X-ray Photoelectron Spectroscopy (XPS) confirmed that they exist in the zero valent oxidation state. UV-vis spectroscopy defined that they exhibit the property of localised surface plasmon resonance (LSPR). The capability demonstrated in this study opens up new avenues for a range of applications, including plasmonics, metamaterials, flexible electronics and biosensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app