Add like
Add dislike
Add to saved papers

Targeting early PKCθ-dependent T-cell infiltration of dystrophic muscle reduces disease severity in a mouse model of muscular dystrophy.

Chronic muscle inflammation is a critical feature of Duchenne muscular dystrophy and contributes to muscle fibre injury and disease progression. Although previous studies have implicated T cells in the development of muscle fibrosis, little is known about their role during the early stages of muscular dystrophy. Here, we show that T cells are among the first cells to infiltrate mdx mouse dystrophic muscle, prior to the onset of necrosis, suggesting an important role in early disease pathogenesis. Based on our comprehensive analysis of the kinetics of the immune response, we further identify the early pre-necrotic stage of muscular dystrophy as the relevant time frame for T-cell-based interventions. We focused on protein kinase C θ (PKCθ, encoded by Prkcq), a critical regulator of effector T-cell activation, as a potential target to inhibit T-cell activity in dystrophic muscle. Lack of PKCθ not only reduced the frequency and number of infiltrating T cells but also led to quantitative and qualitative changes in the innate immune cell infiltrate in mdx/Prkcq-/- muscle. These changes were due to the inhibition of T cells, since PKCθ was necessary for T-cell but not for myeloid cell infiltration of acutely injured muscle. Targeting T cells with a PKCθ inhibitor early in the disease process markedly diminished the size of the inflammatory cell infiltrate and resulted in reduced muscle damage. Moreover, diaphragm necrosis and fibrosis were also reduced following treatment. Overall, our findings identify the early T-cell infiltrate as a therapeutic target and highlight the potential of PKCθ inhibition as a therapeutic approach to muscular dystrophy. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app