Add like
Add dislike
Add to saved papers

SOX5 -Null Heterozygous Mutation in a Family with Adult-Onset Hyperkinesia and Behavioral Abnormalities.

SOX5 encodes a conserved transcription factor implicated in cell-fate decisions of the neural lineage. SOX5 haploinsufficiency induced by larger genomic deletions has been linked to a recognizable pediatric syndrome combining developmental delay with intellectual disability, mild dysmorphism, inadequate behavior, and variable additional features including motor disturbances. In contrast to SOX5 -involving deletions, examples of pathogenic SOX5 small coding variations are sparse in the literature and have been described only in singular cases with phenotypic abnormalities akin to those seen in the SOX5 microdeletion syndrome. Here a novel SOX5 loss-of-function point mutation, c.13C>T (p.Arg5X), is reported, identified in the course of exome sequencing applied to the diagnosis of an unexplained adult-onset motor disorder. Aged 43 years, our female index patient demonstrated abrupt onset of mixed generalized hyperkinesia, with dystonic and choreiform movements being the most salient features. The movement disorder was accompanied by behavioral problems such as anxiety and mood instability. The mutation was found to be inherited to the patient's son who manifested abnormal behavior including diminished social functioning, paranoid ideation, and anxiety since adolescence. Our results expand the compendium of SOX5 damaging single-nucleotide variation mutations and suggest that S OX5 haploinsufficiency might not be restrictively associated with childhood-onset syndromic disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app