Add like
Add dislike
Add to saved papers

Renewable synthesis of n -butyraldehyde from glucose by engineered Escherichia coli .

Background: n -Butyraldehyde is a high-production volume chemical produced exclusively from hydroformylation of propylene. It is a versatile chemical used in the synthesis of diverse C4-C8 alcohols, carboxylic acids, esters, and amines. Its high demand and broad applications make it an ideal chemical to be produced from biomass.

Results: An Escherichia coli strain was engineered to produce n -butyraldehyde directly from glucose by expressing a modified Clostridium CoA-dependent n -butanol production pathway with mono-functional Coenzyme A-acylating aldehyde dehydrogenase (Aldh) instead of the natural bifunctional aldehyde/alcohol dehydrogenase. Aldh from Clostridium beijerinckii outperformed the other tested homologues. However, the presence of native alcohol dehydrogenase led to spontaneous conversion of n -butyraldehyde to n -butanol. This problem was addressed by knocking out native E. coli alcohol dehydrogenases, significantly improving the butyraldehyde-to-butanol ratio. This ratio was further increased reducing media complexity from Terrific broth to M9 media containing 2% yeast extract. To increase production titer, in situ liquid-liquid extraction using dodecane and oleyl alcohol was investigated. Results showed oleyl alcohol as a better extractant, increasing the titer of n -butyraldehyde produced to 630 mg/L.

Conclusion: This study demonstrated n -butyraldehyde production from glucose. Through sequential strain and condition optimizations, butyraldehyde-to-butanol ratio was improved significantly compared to the parent strain. Results from this work may serve as a basis for further development of renewable n -butyraldehyde production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app