Add like
Add dislike
Add to saved papers

Altered synaptic transmission and maturation of hippocampal CA1 neurons in a mouse model of human chr16p11.2 microdeletion.

The pathophysiology of neurodevelopmental disorders is often observed early in infancy and toddlerhood. Mouse models of syndromic disorders have provided insight regarding mechanisms of action, but most studies have focused on characterization in juveniles and adults. Insight into developmental trajectories, particularly those related to circuit and synaptic function, will likely yield important information regarding disorder pathogenesis that leads to symptom progression. Chromosome 16p11.2 microdeletion is one of the most common copy number variations associated with a spectrum of neurodevelopmental disorders. Yet, how haploinsufficiency of chr16p11.2 affects early synaptic maturation and function is unknown. To address this knowledge gap, the present study focused on three key components of circuit formation and function, basal synaptic transmission, local circuit function, and maturation of glutamatergic synapses, in developing hippocampal CA1 neurons in a chr16p11.2 microdeletion mouse model. The data demonstrate increased excitability, imbalance in excitation and inhibition, and accelerated maturation of glutamatergic synapses in heterozygous deletion mutant CA1 neurons. Given the critical role of early synaptic development in shaping neuronal connectivity and circuitry formation, these newly identified synaptic abnormalities in chr16p11.2 microdeletion mice may contribute to altered developmental trajectory and function of the developing brain. NEW & NOTEWORTHY The synaptic pathophysiology underlying neurodevelopmental disorders often emerges during infancy and toddlerhood. Therefore, identifying initial changes in synaptic function is crucial for gaining a mechanistic understanding of the pathophysiology, which ultimately will facilitate the design of early interventions. Here, we investigated synaptic and local circuit properties of hippocampal CA1 neurons in a human chr16p11.2 microdeletion mouse model during early postnatal development (preweaning). The data demonstrate increased neuronal excitability, excitatory/inhibitory imbalance, and accelerated maturation of glutamatergic synapses. These perturbations in early hippocampal circuit function may underlie the early pathogenesis of the heterozygous chr16p11.2 microdeletion, which is often associated with epilepsy and intellectual disability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app