Add like
Add dislike
Add to saved papers

Reconstruction of Cell Focal Adhesions using Physical Constraints and Compressive Regularization.

Biophysical Journal 2017 December 6
We develop a method to reconstruct, from measured displacements of an underlying elastic substrate, the spatially dependent forces that cells or tissues impart on it. Given newly available high-resolution images of substrate displacements, it is desirable to be able to reconstruct small-scale, compactly supported focal adhesions that are often localized and exist only within the footprint of a cell. In addition to the standard quadratic data mismatch terms that define least-squares fitting, we motivate a regularization term in the objective function that penalizes vectorial invariants of the reconstructed surface stress while preserving boundaries. We solve this inverse problem by providing a numerical method for setting up a discretized inverse problem that is solvable by standard convex optimization techniques. By minimizing the objective function subject to a number of important physically motivated constraints, we are able to efficiently reconstruct stress fields with localized structure from simulated and experimental substrate displacements. Our method incorporates the exact solution for a stress tensor accurate to first-order finite differences and motivates the use of distance-based cutoffs for data inclusion and problem sparsification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app