Add like
Add dislike
Add to saved papers

Functional BKCa channel in human resident cardiac stem cells expressing W8B2.

FEBS Journal 2018 Februrary
Recently, a new population of resident cardiac stem cells (CSCs) positive for the W8B2 marker has been identified. These CSCs are considered to be an ideal cellular source to repair myocardial damage after infarction. However, the electrophysiological profile of these cells has not been characterized yet. We first establish the conditions of isolation and expansion of W8B2+ CSCs from human heart biopsies using a magnetic sorting system followed by flow cytometry cell sorting. These cells display a spindle-shaped morphology, are highly proliferative, and possess self-renewal capacity demonstrated by their ability to form colonies. Besides, W8B2+ CSCs are positive for mesenchymal markers but negative for hematopoietic and endothelial ones. RT-qPCR and immunostaining experiments show that W8B2+ CSCs express some early cardiac-specific transcription factors but lack the expression of cardiac-specific structural genes. Using patch clamp in the whole-cell configuration, we show for the first time the electrophysiological signature of BKCa current in these cells. Accordingly, RT-PCR and western blotting analysis confirmed the presence of BKCa at both mRNA and protein levels in W8B2+ CSCs. Interestingly, BKCa channel inhibition by paxilline decreased cell proliferation in a concentration-dependent manner and halted cell cycle progression at the G0/G1 phase. The inhibition of BKCa also decreased the self-renewal capacity but did not affect migration of W8B2+ CSCs. Taken together, our results are consistent with an important role of BKCa channels in cell cycle progression and self-renewal in human cardiac stem cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app