Journal Article
Review
Add like
Add dislike
Add to saved papers

Antidiabetics: Structural Diversity of Molecules with a Common Aim.

BACKGROUND: Diabetes mellitus type 2 (DMT2) is an endocrine disease of global proportions which is currently affecting 1 in 12 adults in the world, with still increasing prevalence. World Health Organization (WHO) declared this worldwide health problem, as an epidemic disease, to be the only non-infectious disease with such categorization. People with DMT2 are at increased risk of various complications and have shorter life expectancy. The main classes of oral antidiabetic drugs accessible today for DMT2 vary in their chemical composition, modes of action, safety profiles and tolerability.

METHODS: A systematic search of peer-reviewed scientific literature and public databases has been conducted. We included the most recent relevant research papers and data in respect to the focus of the present review. The quality of retrieved papers was assessed using standard tools.

RESULTS: The review highlights the chemical structural diversity of the molecules that have the common target-DMT2. So-called traditional antidiabetics as well as the newest and the least explored drugs include polypeptides and amino acid derivatives (insulin, glucagon-like peptide 1, dipeptidyl peptidase-IV inhibitors, amylin), sulfonylurea derivatives, benzylthiazolidine- 2,4-diones (peroxisome proliferator activated receptor-γ agonists/glitazones), condensed guanido core (metformin) and sugar-like molecules (α-glucosidase and sodium/ glucose co-transporter 2 inhibitors).

CONCLUSION: As diabetes becomes a more common disease, interest in new pharmacological targets is on the rise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app