Add like
Add dislike
Add to saved papers

Ca 2+ and lipid signals hold hands at endoplasmic reticulum-plasma membrane contact sites.

Discovery of the STIM1 and Orai proteins as the principal components of store-operated Ca2+ entry has drawn attention to contact sites between the endoplasmic reticulum (ER) and the plasma membrane (PM). Such contacts between adjacent membranes of different cellular organelles, primarily between the mitochondria and the ER, had already been known as the sites where Ca2+ released from the ER can be efficiently channelled to the mitochondria and also where phosphatidylserine synthesis and transfer takes place. Recent studies have identified contact sites between virtually every organelle and the ER and the functional importance of these small specialized membrane domains is increasingly recognized. Most recent developments have highlighted the role of phosphatidylinositol 4-phosphate gradients as critical determinants of the non-vesicular transport of various lipids from the ER to other organelles such as the Golgi or PM. As we learn more about membrane contact sites it becomes apparent that Ca2+ is not only transported at these sites but also controls both the dynamics and the lipid transfer efficiency of these processes. Conversely, lipids are critical for regulating the Ca2+ entry process. This review will summarize some of the most exciting recent developments in this rapidly expanding research field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app