Add like
Add dislike
Add to saved papers

Atomically Thin Mesoporous Co 3 O 4 Layers Strongly Coupled with N-rGO Nanosheets as High-Performance Bifunctional Catalysts for 1D Knittable Zinc-Air Batteries.

Advanced Materials 2018 January
Under development for next-generation wearable electronics are flexible, knittable, and wearable energy-storage devices with high energy density that can be integrated into textiles. Herein, knittable fiber-shaped zinc-air batteries with high volumetric energy density (36.1 mWh cm-3 ) are fabricated via a facile and continuous method with low-cost materials. Furthermore, a high-yield method is developed to prepare the key component of the fiber-shaped zinc-air battery, i.e., a bifunctional catalyst composed of atomically thin layer-by-layer mesoporous Co3 O4 /nitrogen-doped reduced graphene oxide (N-rGO) nanosheets. Benefiting from the high surface area, mesoporous structure, and strong synergetic effect between the Co3 O4 and N-rGO nanosheets, the bifunctional catalyst exhibits high activity and superior durability for oxygen reduction and evolution reactions. Compared to a fiber-shaped zinc-air battery using state-of-the-art Pt/C + RuO2 catalysts, the battery based on these Co3 O4 /N-rGO nanosheets demonstrates enhanced and stable electrochemical performance, even under severe deformation. Such batteries, for the first time, can be successfully knitted into clothes without short circuits under external forces and can power various electronic devices and even charge a cellphone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app