Add like
Add dislike
Add to saved papers

Inhibitors of Histone Deacetylases Are Weak Activators of the FMR1 Gene in Fragile X Syndrome Cell Lines.

Fragile X syndrome is the most common cause of inherited intellectual disability in humans. It is a result of CGG repeat expansion in the 5' untranslated region (5' UTR) of the FMR1 gene. This gene encodes the FMRP protein that is involved in neuronal development. Repeat expansion leads to heterochromatinization of the promoter, gene silencing, and the subsequent absence of FMRP. To date, there is no specific therapy for the syndrome. All treatments in clinic practice provide symptomatic therapy. The development of drug therapy for Fragile X syndrome treatment is connected with the search for inhibitors of enzymes that are responsible for heterochromatinization. Here, we report a weak transcriptional activity of the FMR1 gene and the absence of FMRP protein after Fragile X syndrome cell lines treatment with two FDA approved inhibitors of histone deacetylases, romidepsin and vorinostat. We demonstrate that romidepsin, an inhibitor of class I histone deacetylases, does not activate FMR1 expression in patient cell cultures, whereas vorinostat, an inhibitor of classes I and II histone deacetylases, activates a low level of FMR1 expression in some patient cell lines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app