Add like
Add dislike
Add to saved papers

Contrast-enhanced 3D micro-CT of plant tissues using different impregnation techniques.

Background: X-ray micro-CT has increasingly been used for 3D imaging of plant structures. At the micrometer resolution however, limitations in X-ray contrast often lead to datasets with poor qualitative and quantitative measures, especially within dense cell clusters of plant tissue specimens. The current study developed protocols for delivering a cesium based contrast enhancing solution to varying plant tissue specimens for the purpose of improving 3D tissue structure characterization within plant specimens, accompanied by new image processing workflows to extract the additional data generated by the contrast enhanced scans.

Results: Following passive delivery of a 10% cesium iodide contrast solution, significant increases of 85.4 and 38.0% in analyzable cell volumes were observed in pear fruit hypanthium and tomato fruit outer mesocarp samples. A significant increase of 139.6% in the number of analyzable cells was observed in the pear fruit samples along the added ability to locate and isolate better brachysclereids and vasculature in the sample volume. Furthermore, contrast enhancement resulted in significant improvement in the definition of collenchyma and parenchyma in the petiolule of tomato leaflets, from which both qualitative and quantitative data can be extracted with respect to cell measures. However, contrast enhancement was not achieved in leaf vasculature and mesophyll tissue due to fundamental limitations. Active contrast delivery to apple fruit hypanthium samples did yield a small but insignificant increase in analyzable volume and cells, but data on vasculature can now be extracted better in correspondence to the pear hypanthium samples. Contrast delivery thus improved visualization and analysis the most in dense tissue types.

Conclusions: The cesium based contrast enhancing protocols and workflows can be utilized to obtain detailed 3D data on the internal microstructure of plant samples, and can be adapted to additional samples of interest with minimal effort. The resulting datasets can therefore be utilized for more accurate downstream studies that requires 3D data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app