Add like
Add dislike
Add to saved papers

Regulation of fatty acid trafficking in liver by thioesterase superfamily member 1.

Thioesterase superfamily member 1 (Them1) is an acyl-CoA thioesterase that is highly expressed in brown adipose tissue, where it functions to suppress energy expenditure. Lower Them1 expression levels in the liver are upregulated in response to high-fat feeding. Them1 -/- mice are resistant to diet-induced obesity, hepatic steatosis, and glucose intolerance, but the contribution of Them1 in liver is unclear. To examine its liver-specific functions, we created conditional transgenic mice, which, when bred to Them1 -/- mice and activated, expressed Them1 exclusively in the liver. Mice with liver-specific Them1 expression exhibited no changes in energy expenditure. Rates of fatty acid oxidation were increased, whereas hepatic VLDL triglyceride secretion rates were decreased by hepatic Them1 expression. When fed a high-fat diet, Them1 expression in liver promoted excess steatosis in the setting of reduced rates of fatty acid oxidation and preserved glycerolipid synthesis. Liver-specific Them1 expression did not influence glucose tolerance or insulin sensitivity, but did promote hepatic gluconeogenesis in high-fat-fed animals. This was attributable to the generation of excess fatty acids, which activated PPARα and promoted expression of gluconeogenic genes. These findings reveal a regulatory role for Them1 in hepatocellular fatty acid trafficking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app