Add like
Add dislike
Add to saved papers

Aggregation of globular protein as a consequences of macromolecular crowding: A time and concentration dependent study.

The living cells show profoundly crowded condition, called as macromolecular crowding. Crowding essentially impacts on protein structure and lead to its aggregation. Protein aggregates have been involved in a wide range of diseases including Parkinson, Alzheimer's, and Huntington's. Increased in normal physiological macromolecular crowding because of increasing age can be implicated as one of the leading cause of proteopathies. In the present study, we have demonstrated the effect of macromolecular crowding on native structure of hemoglobin using bovine serum albumin as a crowding agent. Conformational changes of Hb at different concentrations of BSA were monitored using intrinsic fluorescence and ATR-FTIR spectroscopy. These results showed the transition of native Hb to a non-native form. Thermodynamic parameters were analyzed by isothermal titration calorimetry. The measurements of turbidity, thioflavin T, congo red and intrinsic fluorescence revealed the formation of significant protein aggregates with time. The kinetics of protein aggregation using relative ThT and 8-anilino-1-naphthalenesulphonic acid spectra clearly showed acceleration of the process with time and in concentration dependent manner. The spectra at 80g/l of BSA incubated for 64h showed formation of maximum Hb aggregates. Transmission electron microscopy results clearly showed the formation of amyloid aggregates structures, thus supporting the spectroscopic data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app