Add like
Add dislike
Add to saved papers

HEK-293 secretome attenuates kainic acid neurotoxicity through insulin like growth factor-phosphatidylinositol-3-kinases pathway and by temporal regulation of antioxidant defense machineries.

Neurotoxicology 2017 December 7
A major impediment in the success of cell therapy for neurodegenerative diseases is the poor survival of grafted cells in the in vivo milieu, predominantly due to accumulated reactive oxygen species, thus prompting the search for suitable alternatives. Accumulating evidence suggests that the therapeutic potential of transplanted cells is partially attributed to the secretome released by them into the extracellular milieu. Studies that investigated the neuroprotective potential of the secretome attributes to the mere presence of growth factors without addressing other underlying cellular/molecular changes that occur upon post-secretome intervention like re-establishing the host cell's free radical scavenging machineries. In the present study, we investigated the neuroprotective effects of human embryonic kidney (HEK-293) cell line derived secretome (HEK-S) in an in vitro model of kainic acid (KA) induced neurodegeneration and explored the possible neuroprotective mechanism(s) of HEK-S. Murine hippocampal cells were exposed to toxic doses of KA (200μM) for 6hours (H) or 24H to induce excitotoxicity. Kainic acid exposed hippocampal cells were then treated with HEK-S either simultaneously or 6h post-KA exposure. Our results revealed that HEK-S confers significant neuroprotection in early/later stages of neurodegeneration through insulin like growth factor (IGF) - phosphatidylinositol-3-kinases (PI3K) pathway, efficiently restoring the host's free radical scavenging mechanisms at molecular-cellular-biochemical levels and also by modulating kainate receptor subunit expressions in host neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app