Add like
Add dislike
Add to saved papers

One pot biocatalytic synthesis of a biodegradable electroactive macromonomer based on 3,4-ethylenedioxytiophene and poly(l-lactic acid).

A novel electroactive macromonomer based on poly(l-lactic acid) (PLLA) with (3,4-ethylenedioxythiophene) (EDOT) functional end groups, was prepared by a traditional approach of organometallic polymerization with stannous octanoate [Sn(oct2 )] and enzymatic polymerization using immobilized Candida antarctica Lipase B (CAL-B) and Amano lipase Pseudomonas cepacia(PS-IM), as catalysts. In the synthetic strategy, (2,3-dihydrothieno[3,4-b] dioxin-2-yl)methanol (EDOT-OH) was used to initiate the ring opening polymerization of lactide to yield PLLA with EDOT end group. All macromonomers (EDOT-PLLA) were characterized by 1 H and 13 C RMN, MALDI-TOF, GPC and EDX. Moreover, ICP-OES analysis showed the presence of Sn traces in the material synthesized by the traditional approach, but that pathway led to macromonomers with higher molecular weight while the enzymatic route led to completely metal-free macromonomers with medium and lower molecular weights. Also, electrochemical and chemical polymerization of EDOT-PLLA were tested showing that it is possible to prepare degradable conducting polymers based on poly(3,4-ethylenedioxythiphene) (PEDOT). The biocatalytic synthesis is a very promising and environmental friendly pathway for the preparation of biodegradable materials for short time applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app