Add like
Add dislike
Add to saved papers

Overcoming STC2 mediated drug resistance through drug and gene co-delivery by PHB-PDMAEMA cationic polyester in liver cancer cells.

Stanniocalcin 2 (STC2) overexpression in hepatocellular carcinoma (HCC) could lead to poor prognosis, which might be due to its induced P-glycoprotein and Bcl-2 protein expression level increase. P-glycoprotein or membrane pump induced drug efflux and altered prosurvival Bcl-2 expression are key mechanisms for drug resistance leading to failure of chemotherapy in HCC. However, current strategy to overcome both P-glycoprotein and Bcl-2 protein induced drug resistance was rarely reported. In this work, we utilized an amphiphilic poly[(R)-3-hydroxybutyrate] (PHB)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) cationic polyester to encapsulate chemotherapeutic paclitaxel (PTX) in hydrophobic PHB domain and Bcl-2 convertor Nur77/ΔDBD gene (Nur77 without DNA binding domain for mitochondria localization) by formation of polyplex due to cationic PDMAEMA segment, to effectively inhibit the drug resistant HepG2/STC2 and SMCC7721/STC2 liver cancer cell growth. Thanks to the cationic nanoparticle complex formation ability and high transfection efficiency to express Bcl-2 conversion proteins, PHB-PDMAEMA/PTX@polyplex could partially impair P-glycoprotein induced PTX efflux and activate the apoptotic function of previous prosurvival Bcl-2 protein. This is the pioneer report of cationic amphiphilic polyester PHB-PDMAEMA to codeliver anticancer drug and therapeutic plasmid to overcome both pump and non-pump mediated chemotherapeutic resistance in liver cancer cells, which might be inspiring for the application of polyester in personalized cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app