Add like
Add dislike
Add to saved papers

Enhancing the efficiency of zero valent iron by electrolysis: Performance and reaction mechanism.

Chemosphere 2018 March
Electrolysis was applied to enhance the efficiency of micron-size zero valent iron (mFe0 ) and thereby promote p-nitrophenol (PNP) removal. The rate of PNP removal by mFe0 with electrolysis was determined in cylindrical electrolysis reactor that employed annular aluminum plate cathode as a function of experimental factors, including initial pH, mFe0 dosage and current density. The rate constants of PNP removal by Ele-mFe0 were 1.72-144.50-fold greater than those by pristine mFe0 under various tested conditions. The electrolysis-induced improvement could be primarily ascribed to stimulated mFe0 corrosion, as evidenced by Fe2+ release. The application of electrolysis could extend the working pH range of mFe0 from 3.0 to 6.0 to 3.0-10.0 for PNP removal. Additionally, intermediates analysis and scavengers experiments unraveled the reduction capacity of mFe0 was accelerated in the presence of electrolysis instead of oxidation. Moreover, the electrolysis effect could also delay passivation of mFe0 under acidic condition, as evidenced by SEM-EDS, XRD, and XPS analysis after long-term operation. This is mainly due to increased electromigration meaning that iron corrosion products (iron hydroxides and oxides) are not primarily formed in the vicinity of the mFe0 or at its surface. In the presence of electrolysis, the effect of electric field significantly promoted the efficiency of electromigration, thereby enhanced mFe0 corrosion and eventually accelerated the PNP removal rates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app