Add like
Add dislike
Add to saved papers

Tensile rupture of medial arterial tissue studied by X-ray micro-tomography on stained samples.

Detailed characterization of damage and rupture mechanics of arteries is one the current challenges in vascular biomechanics, which requires developing suitable experimental approaches. This paper introduces an approach using in situ tensile tests in an X-ray micro-tomography setup to observe mechanisms of damage initiation and progression in medial layers of porcine aortic samples. The technique requires the use of sodium polytungstate as a contrast agent, of which the conditions for use are detailed in this paper. Immersion of the samples during 24h in a 15g/L concentrated solution provided the best compromise for viewing musculo-elastic units in this tissue. The process of damage initiation, delamination and rupture of medial tissue under tensile loading was observed and can be described as an elementary process repeating several times until complete failure. This elementary process initiates with a sudden mode I fracture of a group of musculo-elastic units, followed by an elastic recoil of these units, causing mode II separation of these, hence a delamination plane. The presented experimental approach constitutes a basis for observation of other constituents, or for investigations on other tissues and damage mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app