Add like
Add dislike
Add to saved papers

Dark-chilling and subsequent photo-activation modulate expression and induce reversible association of chloroplast lipoxygenase with thylakoid membrane in runner bean (Phaseolus coccineus L.).

Lipoxygenases (LOXs) are non-haem iron-containing dioxygenases that catalyse oxygenation of polyunsaturated fatty acids. This reaction is the first step in biosynthesis of oxylipins, which play important and diverse roles in stress response. In this study, we identified four LOX genes (PcLOXA, B, C, D) in chilling-sensitive runner bean (Phaseolus coccineus L.) plant and analyzed their expression patterns during long term dark-chilling (4 °C) stress and during day/night (21ºC/4 °C) temperature fluctuations. Three of the four identified LOX genes, namely PcLOXA, PcLOXB and PcLOXD, were induced by wounding stress, while only the PcLOXA was induced by dark-chilling of both detached (wounded) leaves and whole plants. We identified PcLOXA as a chloroplast-targeted LOX protein and investigated its expression during chilling stress in terms of abundance, localization inside chloroplasts and interactions with the thylakoid membranes. The analysis by immunogold electron microscopy has shown that more than 60% of detectable PcLOXA protein was associated with thylakoids, and dark-chilling of leaves resulted in increased amounts of this protein detected within grana margins of thylakoids. This effect was reversible under subsequent photo-activation of chilled leaves. PcLOXA binding to thylakoids is not mediated by the posttranslational modification but rather is based on direct interactions of the protein with membrane lipids; the binding strength increases under dark-chilling conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app