Add like
Add dislike
Add to saved papers

Genes and pathways associated with the occurrence of malignancy in benign lymphoepithelial lesions.

There is increasing evidence concerning the occurrence of malignant lymphoma among people suffering from Mikulicz disease, also termed benign lymphoepithelial lesion (BLEL) and immunoglobulin G4‑associated disease. However, the underlying molecular mechanism of the malignant transformation remains unclear. The present study aimed to investigate the gene expression profile between BLEL and malignant lymphoepithelial lesion (MLEL) conditions using tissue microarray analysis, to identify genes and pathways which may be associated with the risk of malignant transformation. Comparing gene expression profiles between BLEL tissues (n=13) and MLEL (n=14), a total of 1,002 differentially expressed genes (DEGs) were identified including 364 downregulated and 638 upregulated DEGs in BLEL. The downregulated DEGs in BLEL were frequently associated with immune‑based functions, immune cell differentiation, proliferation and survival, and metabolic functions, whereas the upregulated DEGs were primarily associated with organ, gland and tissue developmental processes. The B cell receptor signaling pathway, the transcription factor p65 signaling pathway, low affinity immunoglobulin γ Fc region receptor II‑mediated phagocytosis, the high affinity immunoglobulin ε receptor subunit γ signaling pathway and Epstein‑Barr virus infection, and pathways in cancer, were the pathways associated with the downregulated DEGs. The upregulated DEGs were associated with three pathways, including glutathione metabolism, salivary secretion and mineral absorption pathways. These results suggested that the identified signaling pathways and their associated genes may be crucial for understanding the molecular mechanisms underlying malignant transformation from BLEL, and they may be considered to be markers for predicting malignancy among the BLEL group.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app