Add like
Add dislike
Add to saved papers

IRF3 signaling pathway serves an important role in poly(I:C)-induced procollagen reduction in human skin fibroblasts.

Pattern recognition receptors (PRRs) are part of the immune system. They can recognize pathogen‑associated molecular patterns (PAMPs). Toll‑like receptors (TLRs) and retinoic acid‑inducible gene 1 (RIG‑1)‑like receptors (RLRs) are 2 types of PRR in the innate immune system. Double‑stranded RNA (dsRNA) can exist as a PAMP, including dsRNA viruses. dsRNA is known as a ligand not only for TLR3 but also for RLRs, including melanoma differentiation‑associated gene 5 and RIG‑1. Collagen is the main structural protein in the extracellular space in the skin. Recently, it was reported that treatment of a synthetic dsRNA, poly(I:C), decreases procollagen expression in skin fibroblasts. However, signaling pathways involved in this process have not yet been fully elucidated. The present study further explored the underlying signaling pathways involved in the processes. It was demonstrated by western blotting that treatment of poly(I:C), but not another PAMP, Pam3CSK4, inhibited procollagen expression in cultured human skin fibroblasts. Treatment of poly(I:C)and Pam3CSK4 induced activation of the mitogen‑activated protein kinases and the nuclear factor‑κB pathways. However, only poly(I:C), but not Pam3CSK4, induced the activation of the interferon regulatory factor 3 (IRF3) pathway. By using specific inhibitors, it was demonstrated that inhibition of IRF3 pathway relieved poly(I:C)‑induced procollagen reduction. In conclusion, IRF3 signaling pathway serves an important role in poly(I:C)‑induced procollagen reduction in skin fibroblasts. This suggests that the IRF3 signaling pathway may be a key target for collagen regulation in the skin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app