Journal Article
Review
Add like
Add dislike
Add to saved papers

Mitochondria-mediated damage to dopaminergic neurons in Parkinson's disease (Review).

Mitochondria are important organelles in virtually all eukaryotic cells, and are involved in a wide range of physiological and pathophysiological processes. Besides the generation of cellular energy in the form of adenosine triphosphate, mitochondria are also involved in calcium homeostasis, reactive oxygen species production and the activation of the intrinsic cell death pathway, thus determining cell survival and death. Mitochondrial abnormalities have been implicated in a wide range of disorders, including neurodegenerative disease such as Parkinson's disease (PD), and considered as a primary cause and central event responsible for the progressive loss of dopaminergic neurons in PD. Thus, reversion or attenuation of mitochondrial dysfunction should alleviate the severity or progression of the disease. The present review systematically summarizes the possible mechanisms associated with mitochondria‑mediated dopaminergic neuron damage in PD, in an attempt to elucidate the requirement for further studies for the development of effective PD treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app