JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of catechins on ET-1-induced stimulation of PLD and NADPH oxidase activities in pulmonary smooth muscle cells: determination of the probable mechanism by molecular docking studies.

The treatment of human pulmonary artery smooth muscle cells with ET-1 stimulates the activity of PLD and NADPH oxidase, but this stimulation is inhibited by pretreatment with bosentan (ET-1 receptor antagonist), FIPI (PLD inhibitor), apocynin (NADPH oxidase inhibitor), and EGCG and ECG (catechins having a galloyl group), but not EGC and EC (catechins devoid of a galloyl group). Herein, using molecular docking analyses based on our biochemical studies, we determined the probable mechanism by which the catechins containing a galloyl group inhibit the stimulation of PLD activity induced by ET-1. The ET-1-induced stimulation of PLD activity was inhibited by SecinH3 (inhibitor of cytohesin). Arf6 and cytohesin-1 are associated in the cell membrane, which is not inhibited by the catechins during ET-1 treatment of the cells. However, EGCG and ECG inhibited the binding of GTPγS with Arf6, even in the presence of cytohesin-1. The molecular docking analyses revealed that the catechins containing a galloyl group (EGCG and ECG) with cytohesin-1-Arf6GDP , but not the catechins without a galloyl group (EGC and EC), prevent GDP-GTP exchange in Arf6, which seems to be an important mechanism for inhibiting the activation of PLD induced by ET-1, and subsequently increases the activity of NADPH oxidase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app