Add like
Add dislike
Add to saved papers

High-Throughput Computational Screening of Multivariate Metal-Organic Frameworks (MTV-MOFs) for CO 2 Capture.

Multivariate metal-organic frameworks (MTV-MOFs) contain multiple linker types within a single structure. Arrangements of linkers containing different functional groups confer structural diversity and surface heterogeneity and result in a combinatorial explosion in the number of possible structures. In this work, we carried out high-throughput computational screening of a large number of computer-generated MTV-MOFs to assess their CO2 capture properties using grand canonical Monte Carlo simulations. The results demonstrate that functionalization enhances CO2 capture performance of MTV-MOFs when compared to their parent (unfunctionalized) counterparts, and the pore size plays a dominant role in determining the CO2 adsorption capabilities of MTV-MOFs irrespective of the combinations of the three functional groups (-F, -NH2 , and -OCH3 ) that we investigated. We also found that the functionalization of parent MOFs with small pores led to larger enhancements in CO2 uptake and CO2 /N2 selectivity than functionalization in larger-pore MOFs. Free energy contour maps are presented to visually compare the influence of linker functionalization between frameworks with large and small pores.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app