Add like
Add dislike
Add to saved papers

Monocarboxylate transporter 1 and the vulnerability of oligodendrocyte lineage cells to metabolic stresses.

AIMS: Oligodendrocytes, especially oligodendrocyte precursor cells, are known to be sensitive to hypoxic and metabolic stresses. Vulnerability of oligodendrocytes is considered a contributing factor to white matter dysfunction. However, little is known about the energy processing characteristics of oligodendrocyte lineage cells under basal and metabolic stress conditions. The aim of this study was to identify the energy requirements and cellular responses of oligodendrocytes at different developmental stages.

METHODS: We compared the metabolic stress responses between myelinating oligodendrocytes (OLs) and oligodendrocyte precursor cells (OPCs). Differential regulation of cellular response was also investigated.

RESULTS: We found that, following cerebral ischemia, monocarboxylate transporter 1 (MCT1) expression was upregulated in the peri-infarct striatum but not in the cortex of the brain. In vitro ischemia models were used to induce oligodendrocyte stress as well. An increase in MCT1 expression was detected in OPCs after a mild oxygen-glucose deprivation. Double-labeled immunohistochemical analysis revealed that OPCs and OLs responded differently to metabolic stresses and that the susceptibility to metabolic stresses of OPCs and OLs was associated with their distinct expression profiles of MCT1.

CONCLUSION: Taken together, this study shows that MCT1 plays a role in the responses of OPCs and OLs to metabolic and ischemic stresses and suggests that redistribution of energy substrates is a determinant in white matter injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app