Add like
Add dislike
Add to saved papers

Production of cellulosic organic acids via synthetic fungal consortia.

Consolidated bioprocessing (CBP) is a potential breakthrough technology for reducing costs of biochemical production from lignocellulosic biomass. Production of cellulase enzymes, saccharification of lignocellulose, and conversion of the resulting sugars into a chemical of interest occur simultaneously within a single bioreactor. In this study, synthetic fungal consortia composed of the cellulolytic fungus Trichoderma reesei and the production specialist Rhizopus delemar demonstrated conversion of microcrystalline cellulose (MCC) and alkaline pre-treated corn stover (CS) to fumaric acid in a fully consolidated manner without addition of cellulase enzymes or expensive supplements such as yeast extract. A titer of 6.87 g/L of fumaric acid, representing 0.17 w/w yield, were produced from 40 g/L MCC with a productivity of 31.8 mg/L/hr. In addition, lactic acid was produced from MCC using a fungal consortium with Rhizopus oryzae as the production specialist. These results are proof-of-concept demonstration of engineering synthetic microbial consortia for CBP production of naturally occurring biomolecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app