JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Colon Ascendens Stent Peritonitis (CASP) Induces Excessive Inflammation and Systemic Metabolic Dysfunction in a Septic Rat Model.

The colon ascendens stent peritonitis (CASP) surgery induces a leakage of gut contents, causing polymicrobial sepsis related to post-operative multiple organ failure and death in surgical patient. To evaluate the effects of CASP on multiple organs, we analyzed the systemic metabolic consequences in liver, kidney, lung, and heart of rats after CASP by employing a combination of metabolomics, clinical chemistry, and biological assays. We found that CASP surgery after 18 h resulted in striking elevations of lipid, amino acids, acetate, choline, PC, and GPC in rat liver together with significant depletion of glucose and glycogen. Marked elevations of organic acids including lactate, acetate, and creatine and amino acids accompanied by decline of glucose, betaine, TMAO, choline metabolites (PC and GPC) nucleotides, and a range of organic osmolytes such as myo-inositol are observed in the kidney of 18 h post-operative rat. Furthermore, 18 h post-operative rats exhibited accumulations of lipid, amino acids, and depletions of taurine, myo-inositol, choline, PC, and GPC and some nucleotides including uridine, inosine, and adenosine in the lung. In addition, significant elevations of some amino acids, uracil, betaine, and choline metabolites, together with depletion of inosine-5'-monophosphate, were only observed in the heart of 18 h post-operative rats. These results provide new insights into pathological consequences of CASP surgery, which are important for timely prognosis of sepsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app