Journal Article
Review
Add like
Add dislike
Add to saved papers

Reconstitution of membrane tethering mediated by Rab-family small GTPases.

Membrane tethering is one of the most critical steps to determine the spatiotemporal specificity of membrane trafficking, which is the process to selectively transport proteins, lipids, and other biological molecules to the appropriate locations in eukaryotic cells, such as subcellular organelles, the plasma membrane, and the extracellular space. Based on genetic, cell biological, biochemical, and structural studies, Rab-family small GTPases and a number of Rab-interacting proteins (termed Rab effectors), including coiled-coil tethering proteins and multisubunit tethering complexes, have been proposed to be key protein components for membrane tethering. Nevertheless, indeed whether and how Rab GTPases and their specific Rab effectors directly act upon and catalyze membrane tethering still remains enigmatic. By chemically defined reconstitution of membrane tethering from purified Rab-family GTPase proteins and synthetic liposomal membranes, recent studies have revealed the intrinsic potency of Rab-family GTPases to physically and specifically tether two distinct lipid bilayers of liposomal membranes. Experimental evidence from these reconstitution studies support the novel working model in which Rab-family small GTPases act as a bona fide membrane tether for mediating membrane tethering events in eukaryotic membrane trafficking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app