Add like
Add dislike
Add to saved papers

Glioblastoma Stem Cells and Their Microenvironment.

Glioblastoma (GBM) is the most common primary malignant astrocytoma associated with a poor patient survival. Apart from arising de novo, GBMs also occur due to progression of slower growing grade III astrocytomas. GBM is characterized by extensive hypoxia, angiogenesis, proliferation and invasion. Standard treatment options such as surgical resection, radiation therapy and chemotherapy have increased median patient survival to 14.6 months in adults but recurrent disease arising from treatment resistant cancer cells often results in patient mortality. These treatment resistant cancer cells have been found to exhibit stem cell like properties. Strategies to identify or target these Glioblastoma Stem Cells (GSC) have proven to be unsuccessful so far. Studies on cancer stem cells (CSC) within GBM and other cancers have highlighted the importance of paracrine signaling networks within their microenvironment on the growth and maintenance of CSCs. The study of GSCs and their communication with various cell populations within their microenvironment is therefore not only important to understand the biology of GBMs but also to predict response to therapies and to identify novel targets which could stymy support to treatment resistant cancer cells and prevent disease recurrence. The purpose of this chapter is to introduce the concept of GSCs and to detail the latest findings indicating the role of various cellular subtypes within their microenvironment on their survival, proliferation and differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app