JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Recombinant human factor VIIa (rFVIIa) in hemophilia: mode of action and evidence to date.

Recombinant activated factor VII (rFVIIa) is a bypassing agent widely used both in the treatment and prevention of hemorrhagic complications due to hemophilia with inhibitor. In such cases, antihemophilic factors cannot be used. The normal physiology of factor VII/ factor VIIa (FVII/FVIIa) in the hemostatic process requires the presence of tissue factor (TF) that links to FVII leading to a FVIIa-TF complex which activates both factor X and factor IX. The therapeutic use of rFVIIa requires high amount of FVIIa. Some studies demonstrate that FVIIa at high doses still requires tissue factor for function, whereas others suggest that FVIIa activates FX directly on the platelet surface, in a TF-independent manner. In the present article, we discuss the arguments supporting both TF-dependent and TF-independent modes of action. Finally, the coexistence of both TF-dependent and TF-independent mechanisms cannot be excluded.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app