Add like
Add dislike
Add to saved papers

Suppression of autophagy in the brain of transgenic mice with overexpression of А53Т-mutant α-synuclein as an early event at synucleinopathy progression.

Neuroscience Letters 2018 April 14
Transgenic overexpression of α-synuclein is a common model of Parkinson's disease (PD). Accumulation of А53Т-mutant α-synuclein induces three autophagy cell responses: the inhibition of autophagy caused by the accumulation of α-synuclein, compensatory activation of macroautophagy in response to inhibition of the chaperone-mediated autophagy, and toxic effects of mutant α-synuclein accompanied by the activation of autophagy. The overall effect of long-term overexpression of mutant α-synuclein in vivo remains unclear. Here we evaluated the activity of autophagy in the frontal cortex, striatum and s.nigra of transgenic mice with overexpression of А53Т-mutant α-synuclein. We revealed low autophagic activity in the dopaminergic structures of 5 mo. transgenic B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J mice as compared to controls C57Bl/6J mice. The results were further supported by the data on tyrosine hydroxylase immunostaining that indicated its significant decrease in the striatum but not in s.nigra of transgenic mice and might be more related to earlier damage of dopaminergic neurites than to the somas due to disturbed formation of autophagosomes at the neuron periphery. The results provide evidence of a possible contribution of suppressed autophagy to the development of PD-like condition as an early event at synucleinopathy progression. Activation of autophagy at early stages of PD seems to be a promising therapeutic tool while B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J mice are suggested as a suitable and adequate model for studying the neuroprotective potential and value of this approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app