Add like
Add dislike
Add to saved papers

Increasing mediolateral standing sway is associated with increasing corticospinal excitability, and decreasing M1 inhibition and facilitation.

Gait & Posture 2018 Februrary
In standing, corticospinal excitability increases and primary motor cortex (M1) inhibition decreases in response to anterior posterior or direction unspecific manipulations that increase task difficulty. However, mediolateral (ML) sway control requires greater active neural involvement. Therefore, the primary purpose of this study was to determine the pattern of change in neural excitability when ML postural task difficulty is manipulated and to test whether the neural excitability is proportional to ML sway magnitude across conditions. Tibialis anterior corticospinal excitability was quantified using motor evoked potential (MEP) and postural sway was indexed using ML center of pressure (COP) velocity. Additionally, we examined inhibition and facilitation processes in the primary motor cortex using the paired pulse short interval intracortical inhibition (SICI) and intracortical facilitation (ICF) techniques respectively. Measurements were repeated in four conditions with quiet stance as a control. Differences between conditions were tested using one-way repeated measures ANOVAs, on log transformed data. Associations were quantified using Spearman's Rank Correlation Coefficient. There was a significant main effect of condition on all the neural excitability measures with MEP (p<0.001) being highest in the most difficult condition, and SICI (p=0.01), ICF (p<0.001) being lowest in the most difficult condition. Increasing ML COP velocity was significantly associated with increasing MEP amplitude (r=0.68, p<0.001), but decreasing SICI (r=0.24, p=0.03) and ICF (r=-0.54, p<0.001). Our results show that both corticospinal and M1 excitability in standing are scaled in proportion to ML task difficulty.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app