Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

D-Tyrosine loaded nanocomposite membranes for environmental-friendly, long-term biofouling control.

Water Research 2018 March 2
Strategies to control biofouling without using antimicrobial chemicals are needed to prevent the spread of antibiotic resistance genes and disruption of microbial activities in biological treatment. This study developed an environmentally friendly biofouling resistant membrane by incorporating d-tyrosine onto a commercial nanofiltration membrane using FAU type zeolite nanoparticles that covalently bound to the membrane surface as carriers for slow release. The d-tyrosine loaded membrane had similar water permeability as the unmodified membrane, but greatly reduced initial cell attachment and strongly inhibited subsequent biofilm formation without inactivating the bacteria. The membrane slowly released d-tyrosine in the time course of over 5 days, and retained its anti-biofouling capability in repeated 24 h efficacy tests for as long as 6 days. In nanofiltration operation, the d-tyrosine incorporated zeolite coating completely inhibited cell adhesion on the membrane surface and significantly alleviated membrane flux decline.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app