Add like
Add dislike
Add to saved papers

Recent evolution of 129 I levels in the Nordic Seas and the North Atlantic Ocean.

Most of the anthropogenic radionuclide 129 I released to the marine environment from the nuclear fuel reprocessing plants (NFRP) at Sellafield (England) and La Hague (France) is transported to the Arctic Ocean via the North Atlantic Current and the Norwegian Coastal Current. 129 I concentrations in seawater provides a powerful and well-established radiotracer technique to provide information about the mechanisms which govern water mass transport in the Nordic Seas and the Arctic Ocean and is gaining importance when coupled with other tracers (e.g. CFC, 236 U). In this work, 129 I concentrations in surface and depth profiles from the Nordic Seas and the North Atlantic (NA) Ocean collected from four different cruises between 2011 and 2012 are presented. This work allowed us to i) update information on 129 I concentrations in these areas, required for the accurate use of 129 I as a tracer of water masses; and ii) investigate the formation of deep water currents in the eastern part of the Nordic Seas, by the analysis of 129 I concentrations and temperature-salinity (T-S) diagrams from locations within the Greenland Sea Gyre. In the Nordic Seas, 129 I concentrations in seawater are of the order of 109 at·kg-1 , one or two orders of magnitude higher than those measured at the NA Ocean, not so importantly affected by the releases from the NFRP. 129 I concentrations of the order of 108 atoms·kg-1 at the Ellet Line and the PAP suggest a direct contribution from the NFRP in the NA Ocean. An increase in the concentrations in the Nordic Seas between 2002 and 2012 has been detected, which agrees with the temporal evolution of the 129 I liquid discharges from the NFRPs in years prior to this. Finally, 129 I profile concentrations, 129 I inventories and T-S diagrams suggest that deep water formation occurred in the easternmost area of the Nordic Seas during 2012.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app