Add like
Add dislike
Add to saved papers

Identification of Novel Aurora Kinase A (AURKA) Inhibitors via Hierarchical Ligand-Based Virtual Screening.

Aurora kinases are essential for cell mitosis, amplified, and overexpressed in various human malignancies. Therefore, Aurora kinases have been promising targets for anticancer therapies, which has prompted an intensive search for their small-molecule inhibitors. In this work, we performed a hierarchical and time-efficient virtual screening cascade for scaffold hopping, aiming to obtain structurally novel and highly potent hit compounds targeting Aurora kinases. The cascade consisted of a shape- and an electrostatic-based protocol, combined with a QSAR-based selection protocol. This virtual screening cascade was used to screen two databases, one commercial database named the J&K database containing about 5.2 million diverse molecules and the Drugbank database. Experimental validations led to the identification of one structurally novel and highly potent hit compound (hit 1, found to possess an IC50 of 8.1 and 19 nM for Aurora kinases A and B, respectively), which can be a promising starting point for further exploration. Additionally, Aurora kinases were identified as off-targets for hits 2-6 (Crizotinib, CI-1033, Dasatinib, Bosutinib, MLN-518), which are approved or investigational drugs as listed in Drugbank, plausibly suggesting targeting Aurora kinases may even contribute to their mechanism of action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app